Welkom bij Kennisagenda Automatisch Rijden, een initiatief van het Ministerie van Infrastructuur en Waterstaat, Rijkswaterstaat en de RDW, om een online overzicht te geven van beschikbare en benodigde kennis op het gebied van automatisch rijden.

Het overzicht is verdeeld in een aantal kennisdomeinen om de diverse facetten in beeld te brengen. In de bibliotheek vindt u een uitgebreide collectie van rapporten, papers en presentaties, inclusief samenvattingen en achtergrondinformatie. De bibliotheek wordt wereldwijd gebruikt. Het laatste rapport over Ethiek werd in korte tijd 674 keer opgevraagd! Dagelijks worden ca 30 stukken gedownload.

De collectie kennisdocumenten wordt in Dropbox beheerd. Met Dropbox kunt u direct in de mappen met stukken en full tekst zoeken. Neem contact op met joop@veenis.net om toegang te verkrijgen tot de Dropbox.
Sinds 2015 houden we een lijst kennisvragen bij (de benodigde kennis). De collectie documenten geeft op steeds meer kennisvragen een antwoord. Er komen nieuwe vragen bij omdat we steeds verder zijn in de implementatie van “Connected Automated Driving”. De set kennisvragen omvat de onderwerpen automatisch rijden en Smart Mobility (ITS). Op het thema ITS zijn hier aanvullende overzichten met projecten beschikbaar. Ook ontwikkelen experts op thema’s kennis en standaarden; een overzicht staat hier .
De populaire kennisvragen zijn: 

IMPACT-Veiligheid

60%

ROAD SAFETY WITH SELF-DRIVING VEHICLES: GENERAL LIMITATIONS AND ROAD SHARING WITH CONVENTIONAL VEHICLES

Chapter 3/ Conclusion

Self-driving vehicles could compensate for some but not all crashes caused by other traffic participants (Pedestrian error could be compensated by AV). Lighting failures might turn out to be irrelevant to safety from the perspective of being able to control one’s vehicle at night, because self-driving vehicles might not rely on visual input. / (1) The expectation of zero fatalities with self-driving vehicles is not realistic. (2) It is not a foregone conclusion that a self-driving vehicle would ever perform more safely than an experienced, middle-aged driver. (3)During the transition period when conventional and self-driving vehicles would share the road, safety might actually worsen, at least for the conventional vehicles.

Safety Benefits of Automated Vehicles: Extended Findings from Accident Research for Development, Validation and Testing

17.4  Significance of Possible Predictions based on Accident Data

 

60% 

Zoeken naar strepen op het asfalt

Introduction page 4 of document

Van de 33.000 verkeersslachtoffers die de VS jaarlijks betreurt, zijn er volgens deskundigen 22.000 te voorkomen als we de mens achter het stuur vandaan halen.

Tomorrow’s Road Infrastructure for Automated Driving

Slide 11

Point made by an online respondent of a survey:

“I am extremely concerned that proponents have little regard to or understanding of the level of reliability required to class any of these systems as safe . For example in regard to Google cars : ‘Ultimately, Google aims to provide a solution for the millions of car accidents that occur worldwide – 93 percent due to human error .’Statement is misleading/ wrong . Human factors contribute to 93 percent of crashes but many other factors also contribute. And the most responsible drivers cause a crash where someone is injured around once in 2,000,000 Miles. And public would expect autonomous cars to have a much lower rate-say once in 20,000,000miles.That requires a system that will not fail/malfunction more than once in ~ 80 vehicle lives or once in 1250 years of average driving.”

The Release of Autonomous Vehicles

Chapter 21.1

70%

Automated Vehicles, Are we ready ?

Chapter 3.3

AVs are capable of providing large amounts of data that could assist investigation in case of a crash. By recording the actions and forces involved in the minutes before and after a crash, they may help determine the cause of the crash and assist in resolving any liability dispute.

Motoring of the future

Point 33, page 15 in report

Telematics also known as ‘black boxes’ monitor the location of a driver and driving performance.

Safety Benefits of Automated Vehicles: Extended Findings from Accident Research for Development, Validation and Testing

However, a safety prognosis of highly or fully automated vehicles depends on assumptions, as so far no series applications of such features exist. For testing methods in order to develop and validate safe automated vehicles with reasonable expenditure, the author recommends combining area-wide traffic, accident, weather, and vehicle operation data as well as traffic simulations.

Two questions discussed in paper:

–What significance do analyzes and findings from road-accident research hold for the introduction of automated vehicles?

–How can the potential safety benefits of automated vehicles be established?

The validity of accident data regarding potential safety benefits varies considerably depending on the collection method.

70%

Safety Benefits of Automated Vehicles: Extended Findings from Accident Research for Development, Validation and Testing
17.1 introduction

→ report goes into more detail
For testing methods in order to develop and validate safe automated vehicles with reasonable expenditure, the author recommends combining area-wide traffic, accident, weather, and vehicle operation data as well as traffic simulations. Based on these findings, a realistic evaluation of internationally and statistically relevant real world traffic scenarios as well as error processes and stochastic models can be analyzed (in combination with virtual tests in laboratories and driving simulators)to control critical driving situations in the future.

Self-Driving Regulation, Pro-Market Policies Key to Automated Vehicle Innovation
50%
One important challenge, which is expected to be met by late 2014 or early 2015 , is providing sufficient evidence that road – tested autonomous vehicles are in fact safer than manually driven vehicles. As Bryant Walker Smith of Stanford Law School has noted, a high degree of statistical confidence must be reached in order for automakers and component developers to begin scaling up technology deployment beyond testing.

Google’s self- driving cars have logged over 500,000 miles on U.S. public roads to date. To demonstrate their safety over manually driven vehicles with 99 percent confidence, Google will need to log approximately an additional 200,000 miles of crash-free automated driving (see Table 2).

60%

The Release of Autonomous Vehicles

21.3  Requirements for a Test Concept

In order to discuss in the following section why full automation poses a particular challenge for safety validation, we will first describe the requirements for test concepts to assess safety. These are divided into effectiveness and efficiency criteria.

21.5.1 Validity of the current test concept for autonomous driving

At present, real driving is the most important method for the approval; the reason for this, in particular, is the validity combined with the justifiable economic overhead. However, along with the economic overhead, autonomous driving also presents a systematic challenge for the known methods. At present, real driving stands for driving in public road traffic with test drivers. The task of the test driver is to drive or supervise the vehicle in every situation in accordance with the task of the vehicle user. Transferred to autonomous driving, the use of a test driver in the driver’s seat would be non-real behavior of a user, as the user does not have to supervise the vehicle and the environment anymore and intervene.

Motoring of the future

Point 64, page 27 in report

50%

Witnesses discussed the research evidence for the effectiveness of different systems. Professor Sampson said that it was very difficult to research which technologies were most effective in terms of reducing accidents, because of the difficulties in running controlled trials of different features, with sufficient numbers of vehicles. Professor Carsten explained that the key struggle was with the continual monitoring and evaluation of technology, and developing an understanding of how casualty rates were affected over time by different technologies.

He explained that while it was statistically possible to show the safety benefits arising from car impact regulations, it was “really hard” to do this in relation to other safety approaches.

Het kennisjaarverslag doet verslag van de kennisontwikkeling. Het geeft aan op welke kennisvragen er antwoorden en onderzoeken beschikbaar zijn gekomen. In december agenderen we de onderwerpen en kennisvragen voor onderzoek en proeven in het komende jaar. Momenteel wordt gewerkt aan de prioriteiten in de lijst met kennisvragen (AR+C-ITS), door oa IenW, RWS, Kennisinstellingen en Provincies, Steden, regio’s en proefprojecten.
Op deze site vindt u verder via het menu een overzicht van relevante congressen en evenementen en een collectie filmpjes en webinars. Nieuws en actuele ontwikkelingen worden middels de bibliotheek en twitterfeed (#KARNL) door ons bijgehouden. Elke week wordt veel kennis en materiaal toegevoegd aan de collectie, op alle kennisgebieden.